PUNCHING SHEAR CALCULATIONS ${ }^{1}$ ACI-318; ADAPT-BUILDER

1. OVERVIEW

Punching shear calculation applies to column-supported slabs, classified as two-way structural systems.

This writing (i) defines the different conditions for punching shear calculation, (ii) presents the relationships used for code check of each condition using ACl-318, (iii) presents a numerical example for each condition, and (iv) demonstrates that the program ADAPT-BUILDER correctly recognizes each case, and accordingly. This writing also serves as a guideline for verification of punching shear calculations reported by ADAPT-BUILDER.

Depending on the location of a column with respect to the slab edges, four conditions are identified. These are:

- Interior column, where the distance from each face of a column to the slab edge is at least four times the slab thickness (columns 4 and 5 in Fig. 1-1);
- Edge column, where one face of a column in direction of design strip is closer to the slab edge in the same direction by four times the slab thickness (column 2 in Fig. 1-1);
- Corner column, where two adjacent faces of a column are closer to their associated slab edges by less than four times the slab thickness (column 1 in Fig. 1-1);
- End column, where a column face is closer to a slab edge normal to the design strip by less than four times the slab thickness (column 6 in Fig. 1-1)

Columns at re-entrant corners, such as Column 3 in Fig. 1-1 are conservatively treated as edge columns. Punching shear relationships of the code do not apply to columns that are connected to one or more beams, nor do they apply to walls/supports. Adequacy of shear transfer in such cases has to be established differently.

The calculations are presented by way of a numerical example. The geometry, material, loading and other particulars of the structure selected for the numerical example are given below and in Fig.1-1.

Thickness of slab $=9$ in (229 mm)

[^0]

FIGURE 1-1

(i) Material Properties

- Concrete:

Compressive strength, f_{c}

$$
=4000 \mathrm{ksi}
$$

Weight
Modulus of Elasticity

$$
\begin{aligned}
& =150 \mathrm{pcf} \\
& =3605 \mathrm{ksi}
\end{aligned}
$$

Prestressing:
Low Relaxation, Unbonded System
Strand Diameter

$$
\begin{aligned}
& =1 / 2 \mathrm{in} \\
& =0.153 \mathrm{in}^{2}
\end{aligned}
$$

Strand Area
Modulus of Elasticity
Ultimate strength of strand,
(13 mm)

Minimum strand cover
From top fiber
From bottom fiber

$$
\begin{array}{lll}
\text { Interior spans } & =1 \text { in } & (25 \mathrm{~mm}) \\
\text { Exterior spans } & =1 \text { in } & (25 \mathrm{~mm})
\end{array}
$$

Technical Note

- Nonprestressed Reinforcement:

Yield stress f_{y}	$=60 \mathrm{ksi}$	$(413.69 \mathrm{MPa})$
Modulus of Elasticity	$=29000 \mathrm{ksi} \quad(199,949 \mathrm{MPa})$	
Minimum Rebar Cover	$=0.75 \mathrm{in}$ Top and Bottom	$(19 \mathrm{~mm})$

(ii) Loading

Dead load = self weight + 20 psf (superimposed)
Live load $=40 \mathrm{psf}$
$\left(1.92 \mathrm{kN} / \mathrm{m}^{2}\right)$

1.1. Relationships

The calculations are intended to determine whether or not a given slab-column connection meets the minimum safety requirements of the code against failure. It is not the intent of the calculations to find the "actual" condition of stress distribution at the column-slab location. The relationships used are empirical. Using test results, the relationships are calibrated to deliver safe designs.

The calculation steps are:

- Determine the factored column moment (design moment M_{u}) and the factored shear (design shear V_{u}). In many instances, column reaction is conservatively used as design value for punching shear.
- Consider a fraction of the unbalanced moment ($\gamma \mathrm{M}_{\mathrm{u}}$) to contribute to the punching shear demand. The unbalanced moment is conservatively taken as the sum of upper and column moments at a joint.
- Using the code relationships, select an assumed (critical) failure surface and calculate a hypothetical maximum punching shear stress for the assumed surface.
- Using the geometry of the column-slab location and its material properties, calculate an "allowable" punching shear stress.
- If the maximum punching shear stress calculated does not exceed the allowable value, the section is considered safe.
- If the hypothetical maximum punching shear stress exceeds the allowable value by a moderate amount, punching shear reinforcement may be provided to bring the connection within the safety requirements of the code. The design of punching shear reinforcement is not covered in this writing.
- If the hypothetical maximum punching shear reinforcement exceeds the allowable values by a large margin, the section has to be enlarged.

The basic relationship is as follows:

$$
\begin{equation*}
v_{u}=\frac{V_{u}}{A_{c}}+\frac{\gamma \times M_{u} \times c}{J_{c}} \tag{1-1}
\end{equation*}
$$

Where,
$V_{u}=$ absolute value of the direct shear;
$M_{u}=$ Unbalanced column moment;
$A_{c}=$ area of concrete of assumed critical section;
$\gamma_{v}=$ fraction of the moment transferred by shear;
$c=$ distance from centroidal axis of critical section to the perimeter of the critical section in the direction of analysis; and
$J_{c}=$ a geometry property of critical section, analogues to polar moment of inertia of segments forming area A_{c}.

The first critical shear failure plane is assumed at a distance $d / 2$ from the face of support. Where "d" is the effective depth of the section.

Expressions for A_{c}, J_{c}, and γ_{v} for all types of columns are given below.

(i) Interior Column (Fig. 1.1-1)

FIGURE 1.1-1

$$
\begin{aligned}
A c & =2 d\left(c_{1}+c_{2}+2 d\right) \\
J_{c} & =\left(c_{1}+d\right)^{*} d^{3} / 6+\left(c_{1}+d\right)^{3 *} d / 6+d^{*}\left(c_{2}+d\right)^{*}\left(c_{1}+d\right)^{2} / 2 \\
\gamma v & =1-\left\{1 /\left[1+(2 / 3) *\left(\left(c_{1}+d\right) /\left(c_{2}+d\right)\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

Where c_{1} and c_{2} are the column dimensions with c_{1} perpendicular to the axis of moment, and d is the effective depth.
(ii) End Column (Refer Fig. 1.1-2)

FIGURE 1.1-2

$$
\begin{aligned}
\mathrm{Ac} & =\mathrm{d}(2 \mathrm{c} 1+\mathrm{c} 2+2 \mathrm{~d}) \\
\mathrm{C}_{\mathrm{AB}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{2} /\left(2 \mathrm{c}_{1}+\mathrm{c}_{2}+2 \mathrm{~d}\right) \\
\mathrm{C}_{\mathrm{CD}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)-\mathrm{c}_{\mathrm{AB}} \\
\mathrm{~J}_{\mathrm{c}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{*} \mathrm{~d}^{3} / 6+2 \mathrm{~d}^{*}\left(\mathrm{c}_{\mathrm{AB}}^{3}+\mathrm{c}_{\mathrm{CD}}{ }^{3}\right) / 3+\mathrm{d}^{*}\left(\mathrm{c}_{2}+\mathrm{d}\right) \mathrm{c}_{\mathrm{AB}}{ }^{2} \\
\gamma \mathrm{~V} & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(\mathrm{c}_{1}+\mathrm{d} / 2\right) /\left(\mathrm{c}_{2}+\mathrm{d}\right)\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

Where c_{1} and c_{2} are the column dimensions with c_{1} parallel to the axis of moment, and d is the effective depth.

(iii) Edge Column (Refer Fig. 1.1-3)

FIGURE 1.1-3

$$
\begin{aligned}
A c & =d\left(2 c_{2}+c_{1}+2 d\right) \\
J_{c} & =\left(c_{1}+d\right)^{3 *} d / 12+\left(c_{1}+d\right)^{*} d^{3} / 12+d^{*}\left(c_{2}+d / 2\right)^{*}\left(c_{1}+d\right)^{2} / 2 \\
\gamma v & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(c_{1}+d\right) /\left(c_{2}+d / 2\right)\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

Where c_{1} and c_{2} are the column dimensions with c_{1} perpendicular to the axis of moment and d is the effective depth.

Column at the re-entrant corner as shown in Fig.1.1-4 is treated as Edge-column.

FIGURE 1.1-4
(iv) Corner Column (Refer Fig. 1.1-5)

FIGURE 1.1-5

$$
\begin{aligned}
\mathrm{Ac} & =\mathrm{d}(\mathrm{c} 1+\mathrm{c} 2+\mathrm{d}) \\
\mathrm{C}_{\mathrm{AB}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{2} / 2^{*}\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{d}\right) \\
\mathrm{C}_{\mathrm{CD}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)-\mathrm{c}_{\mathrm{AB}} \\
J_{\mathrm{C}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{*} \mathrm{~d}^{3} / 2+\mathrm{d}^{*}\left(\mathrm{c}_{\mathrm{AB}}{ }^{3}+\mathrm{c}_{\mathrm{CD}}{ }^{3}\right) / 3+\mathrm{d}^{*}\left(\mathrm{c}_{2}+\mathrm{d} / 2\right) \mathrm{c}_{\mathrm{AB}}^{2} \\
\gamma \mathrm{~V} & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(\mathrm{c}_{2}+\mathrm{d} / 2\right) /\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

Where c_{1} and c_{2} are the column dimensions with c_{1} parallel to the axis of moment and d is the effective depth.

For corner columns (Fig. 1.1-6) the column reaction does not act at the centroid of the critical section. The governing moment for the analysis of the design section is:

$$
M_{u e}=M u-V u^{*} e
$$

FIGURE 1.1-6

(v) Support with Drop Cap (Refer Fig. 1.1-7)

For supports provided with drop caps, or drop panels, a minimum of two punching shear checks are necessary. The first check is at distance " $\mathrm{d}_{1} / 2$ " from the face of the column, where d_{1} is the effective depth of the thickened section (drop cap or drop panel). The second check is at a distance $\mathrm{d}_{2} / 2$ from the face of drop cap/panel, where d_{2} is the slab thickness.

FIGURE 1.1-7

1.2. Punching Shear Stress Calculations

In order to keep the focus on punching shear stress calculation, the work starts by assuming that the design values (Mu and Vu) for each column-slab condition are given. In the general case, these are calculated from the analysis of a design strip, using the Equivalent Frame Method, or Finite Elements. The values used in this writing are obtained from an ADAPTBUILDER computer run. The hand calculations of the stresses are compared with the computer output for verification. Excellent agreement is obtained.

A. Support \#1 - corner column (Refer Fig. 1.1-5)

Actions at the joint are:

$$
\begin{aligned}
& \mathrm{Vu}=41.194 \mathrm{kips}(183.24 \mathrm{kN}) \\
& \mathrm{Mu}=251.965 \mathrm{kip}-\mathrm{ft}(341.61 \mathrm{kN}-\mathrm{m})
\end{aligned}
$$

i. Section Properties for Shear Stress Computations

Column width,

$$
\begin{equation*}
\mathrm{c}_{1}=24 \mathrm{in} \tag{610mm}
\end{equation*}
$$

Column depth, $\quad \mathrm{c}_{2}=24 \mathrm{in}$
Slab depth,
$\mathrm{h}=9 \mathrm{in}$
Rebar used \#5, diameter $=0.625$ in
Top Cover to rebar $\quad=0.75 \mathrm{in}$

$$
\mathrm{d} \quad=9-0.75-0.625=7.625 \mathrm{in}
$$

(610 mm)
(229 mm)
(16 mm)
(19 mm)
(194 mm)
Since top bars in one direction are placed above the top bars in the other direction, the d value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

For corner columns (Fig. 1.1-6) the column reaction does not act at the centroid of the critical section. The governing moment for the analysis of the design section is:

$$
M_{u e} \quad=M u-V u^{*} e
$$

Where "e" is the eccentricity between the centroid of the column and that of the critical section being considered.

$$
\begin{align*}
& \mathrm{c}_{1}+\mathrm{d} / 2=24+(7.625 / 2)=27.813 \mathrm{in} \\
& c_{2}+\mathrm{d} / 2=24+(7.625 / 2)=27.813 \mathrm{in} \\
& A c=d\left(c_{1}+c_{2}+d\right)=7.625 \text { * }(24+24+7.625) \\
& =424.14 \mathrm{in}^{2} \\
& \mathrm{C}_{\mathrm{AB}}=\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{2} / 2^{*}\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{d}\right) \\
& =27.813^{2} /\left(2^{*}(24+24+7.625)\right) \\
& =6.953 \mathrm{in} \tag{177~mm}\\
& \mathrm{C}_{\mathrm{CD}}=\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)-\mathrm{C}_{\mathrm{AB}} \\
& =27.813-6.953=20.860 \mathrm{in} \tag{530mm}\\
& \text { (706 mm) } \\
& \text { (706 mm) } \\
& \left(2.736 e+5 \mathrm{~mm}^{2}\right) \\
& \mathrm{J}_{\mathrm{c}}=\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{*} \mathrm{~d}^{3} / 12+\mathrm{d}^{*}\left(\mathrm{c}_{\mathrm{AB}}{ }^{3}+\mathrm{c}_{\mathrm{CD}}{ }^{3}\right) / 3+\mathrm{d}^{*}\left(\mathrm{c}_{2}+\mathrm{d} / 2\right) \mathrm{C}_{\mathrm{AB}}{ }^{2} \\
& =27.813^{*} 7.625^{3} / 12+7.625^{*}\left(6.953^{3}+20.860^{3}\right) / 3 \\
& +7.625 \text { *27.813* } 6.953^{2} \\
& =35,205 \mathrm{in}^{4} \quad\left(1.465 \mathrm{e}+10 \mathrm{~mm}^{4}\right) \\
& \gamma_{v}=1-\left\{1 /\left[1+(2 / 3) *\left(\left(c_{2}+d / 2\right) /\left(c_{1}+d / 2\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3) *(27.813 / 27.813)^{1 / 2}\right]\right\} \\
& =0.40
\end{align*}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =41.194 / 424.14 \\
& =0.097 \mathrm{ksi} \tag{0.67MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.097 ksi)

iii. Stress Due To Bending

For the first support, if the column moment is clockwise, the moment due to shear must be deducted from the column moment.

$$
\begin{align*}
\text { Eccentricity, } \mathrm{e} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)-\mathrm{c}_{\mathrm{AB}}-\mathrm{c}_{1} / 2=27.813-6.953-12 \\
& =8.860 \mathrm{in}(225 \mathrm{~mm}) \\
\mathrm{M}_{\mathrm{ue}} & =251.965-41.194 * 8.860 / 12 \\
& =221.550 \mathrm{kip}-\mathrm{ft}(300.38 \mathrm{kN}-\mathrm{m}) \\
\mathrm{M}_{\text {stress }} & =\left(\gamma \mathrm{v} * \mathrm{M}_{\mathrm{ue}} * \mathrm{c}_{\mathrm{AB}}\right) / \mathrm{J}_{\mathrm{c}} \\
& =(0.40 * 221.55 * 12 * 6.953) / 35,205 \\
& =0.210 \mathrm{ksi} \tag{1.45MPa}\\
& (\text { (ADAPT-BUILDER } 0.210 \mathrm{ksi})
\end{align*}
$$

iv. Total Stress

Total Stress $\quad=$ Stress due to shear + stress due to bending
$=0.097+0.210$
$=0.307$ ksi
(2.12 MPa)
(ADAPT-BUILDER 0.307 ksi)

v. Allowable Stress

Column cross section is closer to a discontinuous edge than 4 times the slab thickness. Therefore, according to ACl-318-02 section 11.12.2.2, allowable stress shall be computed according to section 11.12.2.1.
\therefore Allowable stress is the least of

- $\phi \mathrm{v}_{\mathrm{c}}=\phi^{*}\left(2+4 / \beta_{c}\right)^{*} \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$\phi \quad=0.75$
$\beta_{c} \quad=$ long side of column/ short side of column
$=24 / 24=1$
$\therefore \phi \mathrm{v}_{\mathrm{c}}=0.75 *(2+4 / 1) * \sqrt{ } 4000 / 1000$
$=0.285 \mathrm{ksi}$
(1.97 MPa)
- $\phi v_{c}=\phi^{*}\left(\left(\alpha_{s}{ }^{*} d / b_{0}\right)+2\right)^{*} V f^{\prime}{ }_{c}$
$\alpha_{s}=20$ for corner columns
$\mathrm{d}=7.625 \mathrm{in}(194 \mathrm{~mm})$
$\mathrm{b}_{0}=$ Perimeter of the critical section
$=2 * 27.813=55.626 \mathrm{in}(1413 \mathrm{~mm})$
$\phi \mathrm{v}_{\mathrm{c}}=0.755^{*}((20 * 7.625 / 55.626)+2)^{*} \sqrt{ } 4000 / 1000$
$=0.225 \mathrm{ksi}$
- $\phi v_{c}=\phi^{*} 4^{*} \sqrt{ } f^{\prime}{ }_{c}$
$=0.75 * 4 * \sqrt{ } 4000 / 1000$
$=0.190 \mathrm{ksi}(1.31 \mathrm{MPa})$

$$
\begin{equation*}
\therefore \text { Allowable Stress } \mathbf{=} \mathbf{0 . 1 9 0} \mathbf{k s i} \tag{1.31MPa}
\end{equation*}
$$

(ADAPT-BUILDER 0.190 ksi)

vi. Stress Ratio

\[

\]

For $4 \sqrt{ }$ f c allowable stress, according to $\mathrm{ACl}-318-02$ section 11.12.3.2, the maximum allowed is 1.5 times the permissible value. Therefore enlarge the section resisting the punching shear.

B. Support \#2 - edge column (Refer Fig. 1.1-3)

Actions at the joint are:

$$
\begin{aligned}
& \mathrm{Vu}=103.761 \mathrm{kips}(461.55 \mathrm{kN}) \\
& \mathrm{Mu}=484.297 \mathrm{kip}-\mathrm{ft}(656.61 \mathrm{kN}-\mathrm{m})
\end{aligned}
$$

i. Section Properties For Shear Stress Computations

Column width, $\quad \mathrm{C}_{1}=24 \mathrm{in} \quad(610 \mathrm{~mm})$
Column depth, $\quad \mathrm{C}_{2}=24$ in (610 mm)
Slab depth, $\quad h=9$ in
Rebar used \#5, diameter $=0.625$ in
Top Cover to rebar $\quad=0.75$ in
(229 mm)
(16 mm)

$$
\begin{equation*}
\mathrm{d}=9-0.75-0.625=7.625 \mathrm{in} \tag{19~mm}
\end{equation*}
$$

(194 mm)
Since top bars in one direction are placed above the top bars in the other direction, the d value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

$$
\begin{aligned}
& \mathrm{c}_{1}+\mathrm{d}=24+7.625=31.625 \mathrm{in} \\
& \text { (} 803 \mathrm{~mm} \text {) } \\
& \mathrm{c}_{2}+\mathrm{d} / 2=24+7.625 / 2=27.813 \text { in } \\
& A c=d\left(2 c_{2}+c_{1}+2 d\right)=7.625 *\left(2^{*} 24+24+2^{*} 7.625\right) \\
& =665.28 \mathrm{in}^{2} \quad\left(4.292 \mathrm{e}+5 \mathrm{~mm}^{2}\right) \\
& J_{c}=\left(c_{1}+d\right)^{3 *} d / 12+\left(c_{1}+d\right)^{*} d^{3} / 12+d^{*}\left(\mathrm{c}_{2}+\mathrm{d} / 2\right)^{*}\left(\mathrm{c}_{1}+\mathrm{d}\right)^{2} / 2 \\
& =31.625^{3 *} 7.625 / 12+31.625 * 7.625{ }^{3} / 12 \quad+7.625 \\
& \text { *27.813 *31.625 }{ }^{2} / 2 \\
& =127,318 \text { in }^{4} \\
& \gamma_{v}=1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(c_{1}+d\right) /\left(c_{2}+d / 2\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3) *(31.625 / 27.813)^{1 / 2}\right]\right\} \\
& =0.416
\end{aligned}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =103.761 / 665.28 \\
& =\mathbf{0 . 1 5 6} \mathbf{~ k s i} \tag{1.08MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.156 ksi$)$

iii. Stress Due To Bending

$$
\begin{align*}
M_{\text {stress }} & =\left(\gamma v * M_{u} *\left(c_{1}+d\right)\right) / 2^{*} J_{c} \\
& =(0.416 * 484.297 * 12 * 31.625) / 2 * 127,318 \\
& =0.300 \mathbf{k s i} \tag{0.15MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.300 ksi)
iv. Total Stress

Total Stress $=$ Stress due to shear + stress due to bending

$$
\begin{align*}
& =0.156+0.300 \\
& =0.456 \mathrm{ksi} \tag{3.14MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.456 ksi)

v. Allowable Stress

Column cross section is closer to a discontinuous edge than 4 times the slab thickness. Therefore, according to ACl-318-02 section 11.12.2.2, allowable stress shall be computed according to section 11.12.2.1.
\therefore Allowable stress is the least of

- $\quad \phi v_{c}=\phi^{*}\left(2+4 / \beta_{c}\right)^{*} \sqrt{ } f^{\prime}{ }_{c}$
$\phi=0.75$
$\beta_{c}=$ long side of column/ short side of column
$=24 / 24=1$
$\therefore \phi \mathrm{v}_{\mathrm{c}}=0.75 *(2+4 / 1) * \sqrt{ } 4000 / 1000$
$=0.285 \mathrm{ksi}(1.96 \mathrm{MPa})$
- $\quad \phi \mathrm{v}_{\mathrm{c}}=\phi^{*}\left(\left(\alpha_{s}{ }^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+2\right)^{*} \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$\alpha_{s}=30$ for edge column
$\mathrm{d}=7.625 \mathrm{in}(194 \mathrm{~mm})$
$\mathrm{b}_{0}=$ Perimeter of the critical section
$=2 * 27.813+31.625=87.251$ in (2216 mm)
$\phi \mathrm{v}_{\mathrm{c}}=0.75 *((30 * 7.625 / 87.251)+2)^{*} \sqrt{ } 4000 / 1000$
$=0.219 \mathrm{ksi}(1.51 \mathrm{MPa})$
- $\quad \phi \mathrm{v}_{\mathrm{c}}=\phi^{*} 4^{*} \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$=0.75 * 4 * \sqrt{ } 4000 / 1000$
$=0.190 \mathrm{ksi}(1.31 \mathrm{MPa})$
\therefore Allowable Stress $\quad=\mathbf{0 . 1 9 0} \mathbf{~ k s i}$
(ADAPT-BUILDER 0.190 ksi)
vi. Stress Ratio

$$
\begin{aligned}
\text { Stress Ratio } & =\text { Actual / Allowable } \\
& =0.456 / 0.190 \\
& =2.40>1
\end{aligned}
$$

(ADAPT-BUILDER 2.40)
For $4 \sqrt{ }$ ' c allowable stress, according to $\mathrm{ACl}-318-02$ section 11.12.3.2, the maximum allowed is 1.5 times the permissible value. Therefore enlarge the section resisting the punching shear.

C. Support \# 3 - edge column (Refer Fig. 1.1-4)

Actions at the joint are:

$$
\begin{array}{ll}
\mathrm{Vu}=155.519 \mathrm{kips} & (691.78 \mathrm{kN}) \\
\mathrm{Mu}=197.858 \mathrm{kip}-\mathrm{ft} & (268.26 \mathrm{kN}-\mathrm{m})
\end{array}
$$

i. Section Properties For Shear Stress Computations

Column width,

$$
\begin{aligned}
\mathrm{c}_{1} & =28 \mathrm{in} \\
\mathrm{c}_{2} & =28 \mathrm{in} \\
\mathrm{~h} & =9 \mathrm{in}
\end{aligned}
$$

Column depth,
Slab depth,
(711 mm)

Rebar used \#5, diameter $=0.625$ in
(711 mm)

Top Cover to rebar $\quad=0.75 \mathrm{in}$
(229 mm)

$$
\mathrm{d}=9-0.75-0.625=7.625 \mathrm{in}
$$

Since top bars in one direction are placed above the top bars in the other direction, the d value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

$$
\begin{aligned}
& c_{1}+d=28+7.625=35.625 \mathrm{in} \\
& \mathrm{c}_{2}+\mathrm{d} / 2=28+7.625 / 2=31.813 \text { in } \\
& A c=d\left(2 c_{2}+c_{1}+2 d\right)=7.625 \text { * }\left(2^{*} 28+28+2^{*} 7.625\right) \\
& =756.78 \mathrm{in}^{2} \\
& \text { (4.882e }+5 \mathrm{~mm}^{2} \text {) } \\
& J_{c}=\left(c_{1}+d\right)^{3}{ }^{*} d / 12+\left(c_{1}+d\right)^{*} d^{3} / 12+d^{*}\left(c_{2}+d / 2\right)^{*}\left(c_{1}+d\right)^{2} / 2 \\
& =35.625^{3 *} 7.625 / 12+35.625{ }^{*} 7.625^{3} / 12 \quad+7.625 \\
& \text { *31.813 *35.625 ²/2 } \\
& =183,976 \mathrm{in}^{4} \\
& \gamma v=1-\left\{1 /\left[1+(2 / 3) *\left(\left(c_{1}+d\right) /\left(c_{2}+d / 2\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3) *(35.625 / 31.813)^{1 / 2}\right]\right\} \\
& =0.414
\end{aligned}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =155.519 / 756.78 \\
& =0.206 \mathbf{k s i} \tag{1.42MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.205 ksi)

iii. Stress Due To Bending

$$
\begin{align*}
M_{\text {stress }} & =\left(\gamma v * M_{u} *\left(c_{1}+d\right)\right) / 2 * J_{c} \\
& =(0.414 * 197.858 * 12 * 35.625) / 2 * 183,976 \\
& =0.095 \mathbf{k s i} \tag{0.66MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.095 ksi)
iv. Total Stress

Total Stress = Stress due to shear + stress due to bending
$=0.206+0.095$
$=0.301 \mathbf{k s i}$
(2.08 MPa)
(ADAPT-BUILDER 0.301 ksi)

v. Allowable Stress

Column cross section is closer to a discontinuous edge than 4 times the slab thickness. Therefore, according to ACl-318-02 section 11.12.2.2, allowable stress shall be computed according to section 11.12.2.1.
\therefore Allowable stress is the least of

- $\quad \phi \mathrm{v}_{\mathrm{c}}=\phi^{*}\left(2+4 / \beta_{\mathrm{c}}\right)^{*} \sqrt{ } \mathrm{f}^{\text {' }}{ }_{\mathrm{c}}$
$\phi=0.75$
$\beta_{c}=$ long side of column/ short side of column
= 28/28 = 1
$\therefore \phi \mathrm{v}_{\mathrm{c}}=0.75{ }^{*}(2+4 / 1)^{*} \sqrt{ } 4000 / 1000$
$=0.285 \mathrm{ksi}$
(1.96 MPa)
- $\quad \phi \mathrm{v}_{\mathrm{c}}=\phi^{*}\left(\left(\alpha_{\mathrm{s}}{ }^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+2\right)^{*} \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$\alpha_{\mathrm{s}}=30$ for edge column
$\mathrm{d}=7.625 \mathrm{in}(194 \mathrm{~mm})$
$\mathrm{b}_{0}=$ Perimeter of the critical section
$=2$ * $31.813+35.625$
$=99.251$ in
$\phi \mathrm{v}_{\mathrm{c}} \quad=0.75$ *((30*7.625/99.251)+2)* $\sqrt{ } 4000 / 1000$
$=0.204 \mathrm{ksi}$
- $\quad \phi \mathrm{V}_{\mathrm{c}} \quad=\phi^{*} 4^{*} \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}$

$$
=0.75 * 4 * \sqrt{ } 4000 / 1000
$$

$$
=0.190 \mathrm{ksi} \quad(1.31 \mathrm{MPa})
$$

(ADAPT-BUILDER 0.190 ksi)
vi. Stress Ratio

$$
\begin{aligned}
& \text { Stress Ratio }=\text { Actual / Allowable } \\
&=0.301 / 0.190 \\
&=1.58>1 \quad \text { N.G } \\
& \\
& \text { (ADAPT-BUILDER 1.58) }
\end{aligned}
$$

For $4 \sqrt{ }$ ' c allowable stress, according to $\mathrm{ACl}-318-02$ section 11.12.3.2, the maximum allowed is 1.5 times the permissible value. Therefore enlarge the section resisting the punching shear.

D. Support \#4 - interior column (Refer Fig.1.1-1)

Actions at the joint are:

$$
\mathrm{Vu}=203.511 \mathrm{kips}(691.78 \mathrm{kN})
$$

$$
\mathrm{Mu}=76.264 \mathrm{kip-ft}(103.40 \mathrm{kN}-\mathrm{m})
$$

i. Section Properties For Shear Stress Computations

Column width,

$$
\begin{align*}
\mathrm{c}_{1} & =24 \mathrm{in} \\
\mathrm{c}_{2} & =24 \mathrm{in} \tag{610mm}\\
\mathrm{~h} & =9 \mathrm{in}
\end{align*}
$$

Column depth,
(610 mm)
Slab depth,
Rebar used \#5, diameter $=0.625$ in

$$
(229 \mathrm{~mm})
$$

Top Cover to rebar

$$
\begin{aligned}
& =0.75 \mathrm{in} \\
\mathrm{~d} & =9-0.75-0.625 \\
& =7.625 \mathrm{in}
\end{aligned}
$$

Since top bars in one direction are placed above the top bars in the other direction, the d value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

ii. Stress Due To Direct Shear

$$
\mathrm{Vu} / \mathrm{Ac}=203.514 / 964.56
$$

$$
\begin{aligned}
& \mathrm{c}_{1}+\mathrm{d}=24+7.625=31.625 \mathrm{in} \\
& c_{2}+d=24+7.625=31.625 \text { in } \\
& \left.\mathrm{Ac}=2 \mathrm{~d}\left(\mathrm{c}_{1}+\mathrm{c}_{2}+2 \mathrm{~d}\right)\right)=2 * 7.625 \text { * }(24+24+2 * 7.625) \\
& =964.56 \mathrm{in}^{2} \\
& \text { (6.223e+5 mm }{ }^{2} \text {) } \\
& J_{c} \quad=\left(c_{1}+d\right)^{*} d^{3} / 6+\left(c_{1}+d\right)^{3 *} d / 6+d^{*}\left(c_{2}+d\right)^{*}\left(c_{1}+d\right)^{2} / 2 \\
& =31.625^{*} 7.625^{3} / 6+31.625^{3 *} 7.625 / 6+7.625{ }^{*} 31.625^{*} 31.625^{2} \\
& \text { /2 } \\
& =163,120 \mathrm{in}^{4} \\
& \gamma_{v}=1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(c_{1}+d\right) /\left(c_{2}+d\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3) *(31.625 / 31.625)^{1 / 2}\right]\right\} \\
& =0.40
\end{aligned}
$$

$$
=0.211 \mathrm{ksi}
$$

(ADAPT-BUILDER 0.211 ksi)

iii. Stress Due To Bending

$$
\begin{aligned}
M_{\text {stress }} & =\left(\gamma v * M_{u} *\left(c_{1}+d\right)\right) /\left(2^{*} J_{c}\right) \\
& =(0.40 * 76.264 * 12 * 31.625) / 2 * 163,120 \\
& =0.035 \mathbf{k s i}
\end{aligned}
$$

(ADAPT-BUILDER 0.035 ksi)

iv. Total Stress

Total Stress $=$ Stress due to shear + stress due to bending

$$
=0.211+0.035
$$

$$
=0.246 \mathrm{ksi}
$$

(ADAPT-BUILDER 0.246 ksi, B12, C7)

v. Allowable Stress

From ACl-318-02 equation 11.36
Allowable Stress,

```
    \(\phi \mathrm{V}_{\mathrm{c}}=\phi^{*}\left[\left(\beta_{\mathrm{p}}{ }^{*} \sqrt{ } \mathrm{f}^{\mathrm{c}}{ }_{\mathrm{c}}+0.3^{*} \mathrm{f}_{\mathrm{pc}}\right)+\mathrm{V}_{\mathrm{p}}\right]\)
```

Where,
$\phi=0.75$
β_{p} is the smaller of 3.5 or $\left(\left(\alpha_{s}{ }^{*} d / b_{0}\right)+1.5\right)$
$\alpha_{\mathrm{s}}=40$ for interior column
$b_{0}=$ Perimeter of the critical section
$=4 * 31.625$
$=126.50 \mathrm{in}$
$\mathrm{d}=7.625$ in
$\beta_{\mathrm{p}}=\left(\left(\alpha_{\mathrm{s}}{ }^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+1.5\right)=\left(\left(40^{*} 7.625 / 126.50\right)+1.5\right)$
$=3.91>3.50, \quad \therefore$ use 3.50
$f_{p c}=P / A=125 \mathrm{ksi} \quad(0.86 \mathrm{MPa})$
Conservatively 125 psi is used since this is a minimum code requirement.

$$
\begin{align*}
\phi v_{c} & =0.75 *\left(3.5^{*} \sqrt{ } 4000+0.3 * 125\right) \\
& =0.194 \mathrm{ksi} \tag{1.34MPa}
\end{align*}
$$

\therefore Allowable Stress $=\mathbf{0} .194 \mathbf{k s i}$
(ADAPT-BUILDER 0.194 ksi)
Note that in the evaluation of allowable stresses, the term corresponding to the vertical component of tendon force (Vp) is conservatively disregarded.

vi. Stress Ratio

$$
\begin{aligned}
\text { Stress Ratio } & =\text { Actual / Allowable } \\
& =0.246 / 0.194 \\
& =1.27>1 \\
& \text { (ADAPT-BUILDER 1.27) }
\end{aligned}
$$

Punching Shear Stress exceeds the permissible value. Provide shear reinforcement.

E. Support \#5 - interior column with drop cap (Refer Fig.1.1-7)

Actions at the joint are:
$\mathrm{Vu}=232.588 \mathrm{kips}(1034.60 \mathrm{kN})$
$\mathrm{Mu}=149.179 \mathrm{kip}-\mathrm{ft}(202.26 \mathrm{kN}-\mathrm{m})$
Check whether the critical section lies within the cap or slab.

Section \#1 (d/2 from the column face)

i. Section Properties For Shear Stress Computations

Column width,

$$
\text { Column depth, } \quad \mathrm{c}_{2}=18 \mathrm{in}
$$

$$
\begin{aligned}
\mathrm{c}_{1} & =18 \mathrm{in} \\
\mathrm{c}_{2} & =18 \mathrm{in} \\
\mathrm{~h} & =9+9=18 \mathrm{in} \\
\text { eter } & =0.625 \mathrm{in} \\
& =0.75 \mathrm{in} \\
\mathrm{~d}_{1} & =18-0.75-0.625=16.625 \mathrm{in}
\end{aligned}
$$

Slab depth,
Rebar used \#5, diameter $=0.625$ in
Top Cover to rebar $\quad=0.75$ in
(457 mm)
(457 mm)
(457 mm)
(16 mm)
(19 mm)
(422 mm)

Since top bars in one direction are placed above the top bars in the other direction, the d_{1} value in this case is measured from the bottom of the drop panel to the bottom of the top layer of rebar.

$$
\begin{array}{rlr}
\mathrm{c}_{1}+\mathrm{d}_{1} & =18+16.625=34.625 \mathrm{in} & (880 \mathrm{~mm}) \\
\mathrm{C}_{2}+\mathrm{d}_{1} & =18+16.625=34.625 \mathrm{in} & (880 \mathrm{~mm}) \tag{880mm}\\
\mathrm{Ac} & \left.=2 \mathrm{~d}\left(\mathrm{c}_{1}+\mathrm{c}_{2}+2 \mathrm{~d}\right)\right)=2 * 16.625^{*}\left(18+18+2^{*} 16.625\right) \\
& =2302.56 \mathrm{in}^{2} & \left(1.486 \mathrm{e}+6 \mathrm{~mm}^{2}\right) \\
\mathrm{J}_{\mathrm{c}} & =\left(\mathrm{c}_{1}+\mathrm{d}\right)^{*} \mathrm{~d}^{3} / 6+\left(\mathrm{c}_{1}+\mathrm{d}\right)^{3 *} \mathrm{~d} / 6+\mathrm{d}^{*}\left(\mathrm{c}_{2}+\mathrm{d}\right)^{*}\left(\mathrm{c}_{1}+\mathrm{d}\right)^{2} / 2 \\
& =34.625^{*} 16.625^{3} / 6+34.625^{3 *} 16.625 / 6+16.625^{*} 34.625^{*} \\
& 34.625^{2} / 2 \\
& =486,604 \mathrm{in}^{4} \\
\gamma v & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(\mathrm{c}_{1}+\mathrm{d}\right) /\left(\mathrm{c}_{2}+\mathrm{d}\right)\right)^{1 / 2 / 7}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3)^{*}(34.625 / 34.625)^{1 / 2}\right]\right\} \\
& =0.40
\end{array}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =232.588 / 2302.56 \\
& =0.101 \mathrm{ksi} \tag{0.70MPa}
\end{align*}
$$

iii. Stress Due To Bending

$$
\begin{align*}
M_{\text {stress }} & =\left(\gamma v * M_{u} *\left(c_{1}+d\right)\right) /\left(2 * J_{c}\right) \\
& =(0.40 * 149.179 * 12 * 34.625) / 2 * 486,604 \\
& =\mathbf{0 . 0 2 5} \mathbf{~ k s i} \tag{0.17MPa}
\end{align*}
$$

iv. Total Stress

$$
\begin{align*}
\text { Total Stress } & =\text { Stress due to shear }+ \text { stress due to bending } \\
& =0.101+0.025 \\
& =\mathbf{0 . 1 2 6} \mathbf{~ k s i} \tag{0.87MPa}
\end{align*}
$$

v. Allowable Stress

From ACl-318-02 (equation 11.36)
Allowable Stress,

$$
\phi v_{c}=\phi^{*}\left[\left(\beta_{p}{ }^{*} V^{\prime}{ }_{c}+0.3^{*} f_{p c}\right)+V_{p}\right]
$$

Where,

$$
\begin{aligned}
& \phi \quad=0.75 \\
& \begin{aligned}
& \phi \\
& \beta_{\mathrm{p}} \text { is the smaller of } 3.5 \text { or }\left(\left(\alpha_{s}^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+1.5\right) \\
& \mathrm{a}_{\mathrm{s}}=40 \text { for interior column } \\
& \mathrm{b}_{0}=\text { Perimeter of the critical section } \\
&=4 \text { * } 34.625 \\
&=138.50 \text { in } \\
& \mathrm{d}=16.625 \text { in } \\
& \beta_{\mathrm{p}}=\left(\left(\alpha_{\mathrm{s}}^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+1.5\right)=\left(\left(40^{*} 16.625 / 138.50\right)+1.5\right) \\
&=6.30>3.50, \\
& \mathrm{f}_{\mathrm{pc}}=P / A=125 \mathrm{ksi} \quad(0.86 \mathrm{MPa})
\end{aligned}
\end{aligned}
$$

Conservatively 125 psi is used since this is a minimum code requirement.

$$
\begin{align*}
\phi \mathrm{v}_{\mathrm{c}} & =0.75 *\left(3.5^{*} \sqrt{ } 4000+0.3 * 125\right) \\
& =0.194 \mathrm{ksi} \tag{1.34MPa}
\end{align*}
$$

\therefore Allowable Stress $\mathbf{=} \mathbf{0 . 1 9 4} \mathbf{k s i}$
Note that in the evaluation of allowable stresses, the term corresponding to the vertical component of tendon force (Vp) is conservatively disregarded.

vi. Stress Ratio

$$
\begin{aligned}
\text { Stress Ratio } & =\text { Actual / Allowable } \\
& =0.126 / 0.194 \\
& =0.65
\end{aligned}
$$

Section \#2 (d/2 from the drop cap face)

i. Section Properties For Shear Stress Computations

Cap width,	c_{1}	$=45 \mathrm{in}$		$(1143 \mathrm{~mm})$
Cap depth,	c_{2}	$=45 \mathrm{in}$		$(1143 \mathrm{~mm})$
Slab depth,	h	$=9 \mathrm{in}$		$(229 \mathrm{~mm})$
Rebar used \#5, diameter	$=0.625 \mathrm{in}$		$(16 \mathrm{~mm})$	
Top Cover to rebar		$=0.75 \mathrm{in}$		$(19 \mathrm{~mm})$
	d_{2}	$=9-0.75-0.625=7.625 \mathrm{in}$		$(194 \mathrm{~mm})$

Since top bars in one direction are placed above the top bars in the other direction, the d_{2} value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

$$
\begin{aligned}
\mathrm{c}_{1} \mathrm{cAP}+\mathrm{d}_{2}= & 45+7.625=52.625 \mathrm{in} \\
\mathrm{c}_{2} \mathrm{cAP}^{+} \mathrm{d}_{2} & =45+7.625=52.625 \mathrm{in} \\
\mathrm{Ac} & =2 \mathrm{~d}\left(\mathrm{c}_{1}+\mathrm{c}_{2}+2 \mathrm{~d}\right)=2^{*} 7.625^{*}\left(45+45+2^{*} 7.625\right) \\
& =1337 \mathrm{~mm}) \\
\mathrm{J}_{\mathrm{c}} & =\left(1605.06 \mathrm{in}^{2}\right. \\
& \left(\mathrm{c}_{1}+\mathrm{d}\right)^{*} \mathrm{~d}^{3} / 6+\left(\mathrm{c}_{1}+\mathrm{d}\right)^{3 *} \mathrm{~d} / 6+\mathrm{d}^{*}\left(\mathrm{c}_{2}+\mathrm{d}\right)^{*}\left(\mathrm{c}_{1}+\mathrm{d}\right)^{2} / 2 \\
& =\left(52.625^{*} 7.625^{3}\right) / 6+\left(52.625^{3 *} 7.625\right) / 6+\left(7.62 \mathrm{~mm}^{2}\right) \\
& \left.52.625^{2}\right) / 2 \\
= & 744,729 \mathrm{in}^{4} \\
\gamma \mathrm{~V} & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(\mathrm{c}_{1}+\mathrm{d}\right) /\left(\mathrm{c}_{2}+\mathrm{d}\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3)^{*}(52.625 / 52.625)^{1 / 2}\right]\right\} \\
& =0.40
\end{aligned}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =232.588 / 1605.06 \\
& =0.145 \mathbf{k s i} \tag{1.00MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.145 ksi)

iii. Stress Due To Bending

$$
\begin{align*}
\mathrm{M}_{\text {stress }} & =\left(\gamma v * \mathrm{M}_{\mathrm{u}} *\left(\mathrm{c}_{1}+\mathrm{d}\right)\right) /\left(2^{*} \mathrm{~J}_{\mathrm{c}}\right) \\
& =(0.40 * 149.179 * 12 * 52.625) / 2 * 744,729 \\
& =0.025 \mathrm{ksi} \tag{0.17MPa}\\
& \quad \text { (ADAPT-BUILDER } 0.025 \mathrm{ksi})
\end{align*}
$$

iv. Total Stress

Total Stress = Stress due to shear + stress due to bending $=0.145+0.025$

$$
=0.170 \mathrm{ksi}
$$

(ADAPT-BUILDER 0.170 ksi)

v. Allowable Stress

From ACl-318-02 equation 11.36
Allowable Stress,

$$
\phi v_{c}=\phi^{*}\left[\left(\beta_{p}{ }^{*} V f^{\prime}{ }_{c}+0.3^{*} f_{p c}\right)+V_{p}\right]
$$

Where,

$$
\begin{align*}
& \phi=0.75 \\
& \left.\beta_{\mathrm{p}} \text { is the smaller of } 3.5 \text { or }\left(\alpha_{s}{ }^{*} \mathrm{~d} / \mathrm{b}_{0}\right)+1.5\right) \\
& \alpha_{\mathrm{s}}=40 \text { for interior column } \\
& \mathrm{b}_{0}=\text { Perimeter of the critical section } \\
& =4 \text { * } 52.625 \\
& =210.50 \mathrm{in} \tag{5347mm}\\
& \mathrm{~d}=7.625 \mathrm{in} \\
& \left.\left.\beta_{p}=\left(\alpha_{s}{ }^{*} d / b_{0}\right)+1.5\right)=\left(40^{*} 7.625 / 210.50\right)+1.5\right) \\
& =2.95<3.50, \quad \therefore \text { use } 2.95 \\
& \mathrm{f}_{\mathrm{pc}}=P / A=125 \mathrm{ksi}(0.86 \mathrm{MPa}) \\
& \phi v_{c}=0.75 *\left(2.95^{*} \sqrt{ } 4000+0.3 * 125\right) / 1000 \\
& =0.168 \mathrm{ksi}
\end{align*}
$$

\therefore Allowable Stress $\mathbf{=} \mathbf{0 . 1 6 8} \mathbf{k s i}$
(1.16 MPa)
(ADAPT-BUILDER 0.168 ksi$)$
Note that in the evaluation of allowable stresses, the term corresponding to the vertical component of tendon force (Vp) is conservatively disregarded.

vi. Stress Ratio

$$
\begin{aligned}
\text { Stress Ratio } & =\text { Actual / Allowable } \\
& =0.170 / 0.168 \\
& =1.01>1
\end{aligned}
$$

(ADAPT-BUILDER 1.01)
Since the stress ratio in section\#2 is larger than the stress ratio in section \#1, the section\#2 governs and reported in the program.

Punching Shear Stress exceeds the permissible value. Provide shear reinforcement.

F. Support \#6 - end column (Refer Fig. 1.1-2)

Actions at the joint are:

$$
\begin{aligned}
& \mathrm{Vu}=94.629 \mathrm{kips}(420.93 \mathrm{kN}) \\
& \mathrm{Mu}=93.862 \mathrm{kip}-\mathrm{ft}(127.26 \mathrm{kN}-\mathrm{m})
\end{aligned}
$$

i. Section Properties For Shear Stress Computations

Column width,	c_{1}	$=28 \mathrm{in}$
Column depth,	c_{2}	$=28 \mathrm{in}$
Slab depth,	h	$=9 \mathrm{in}$
Rebar used \#5, diameter	$=0.625 \mathrm{in}$	
Top Cover to rebar		$=0.75 \mathrm{in}$
	d	$=9-0.75-0.625=7.625 \mathrm{in}$

(711 mm)
(711 mm)
(229 mm)
(16 mm)
(19 mm)
(194 mm)

Since top bars in one direction are placed above the top bars in the other direction, the d value in this case is measured from the bottom of the slab to the bottom of the top layer of rebar.

$$
\begin{aligned}
\mathrm{c}_{1}+\mathrm{d} / 2 & =28+7.625 / 2=31.813 \mathrm{in} \\
\mathrm{c}_{2}+\mathrm{d} & =28+7.625=35.625 \mathrm{in} \\
\mathrm{Ac} & =\mathrm{d}(2 \mathrm{c} 1+\mathrm{c} 2+2 \mathrm{~d})=7.625^{*}\left(2^{*} 28+28+2^{*} 7.625\right) \\
& =756.78 \mathrm{in}^{2} \\
\mathrm{C}_{\mathrm{AB}} & =\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)^{2} /\left(2 \mathrm{c}_{1}+\mathrm{c}_{2}+2 \mathrm{~d}\right) \\
& =31.813^{2} /\left(2^{*} 28+28+2^{*} 7.625\right) \\
& =10.200 \mathrm{in} \\
\mathrm{c}_{\mathrm{CD}} & =31.813-10.200 \\
& =21.613 \mathrm{in} \\
\mathrm{~J}_{\mathrm{C}} & =31.813^{*} 7.625^{3} / 6+2^{*} 7.625^{*}\left(10.200^{3}+21.613^{3}\right) / 3 \\
& +7.625^{*} 35.625^{*} 10.200^{2} \\
& =87,327 \mathrm{in}^{4} \\
\gamma & =1-\left\{1 /\left[1+(2 / 3)^{*}\left(\left(\mathrm{c}_{1}+\mathrm{d} / 2\right) /\left(\mathrm{c}_{2}+\mathrm{d}\right)\right)^{1 / 2}\right]\right\} \\
& =1-\left\{1 /\left[1+(2 / 3)^{*}(31.813 / 35.625)^{1 / 2}\right]\right\} \\
& =0.386
\end{aligned}
$$

ii. Stress Due To Direct Shear

$$
\begin{align*}
\mathrm{Vu} / \mathrm{Ac} & =94.629 / 756.78 \\
& =0.125 \mathrm{ksi} \tag{0.86MPa}
\end{align*}
$$

(ADAPT-BUILDER 0.125 ksi$)$

iii. Stress Due To Bending

$$
M_{u e}=M u-V u^{*} e
$$

For the last support, if the column moment is anticlockwise, the moment due to shear must be deducted.

Eccentricity, $\mathrm{e}=\left(\mathrm{c}_{1}+\mathrm{d} / 2\right)-\mathrm{C}_{\mathrm{AB}}-\mathrm{C}_{1} / 2=31.813-10.200-14$

$$
\begin{align*}
& =7.613 \mathrm{in} \tag{193mm}\\
\mathrm{M}_{\mathrm{ue}} & =93.862-94.629 * 7.613 / 12 \\
& =33.828 \mathrm{kip}-\mathrm{ft} \\
\mathrm{M}_{\text {stress }} & =\left(\gamma \mathrm{v} * \mathrm{M}_{\mathrm{ue}} * \mathrm{C}_{\mathrm{AB}}\right) / \mathrm{J}_{\mathrm{c}} \\
& =(0.386 * 33.828 * 12 * 10.200) / 87,327
\end{align*}
$$

(45.86 kN-m)

$$
\begin{equation*}
=0.018 \mathrm{ksi} \tag{0.12MPa}
\end{equation*}
$$

(ADAPT-BUILDER 0.018 ksi)
iv. Total Stress

$$
\begin{aligned}
\text { Total Stress } & =\text { Stress due to shear }+ \text { stress due to bending } \\
& =0.125+0.018 \\
& =\mathbf{0 . 1 4 3} \mathbf{~ k s i} \\
& (\text { (ADAPT-BUILDER } 0.143 \mathrm{ksi})
\end{aligned}
$$

v. Allowable Stress

Column cross section is closer to a discontinuous edge than 4 times the slab thickness. Therefore, according to ACI-318-02 section 11.12.2.2, allowable stress shall be computed according to section 11.12.2.1.
\therefore Allowable stress is the least of

- $\quad \phi v_{c}=\phi^{*}\left(2+4 / \beta_{c}\right)^{*} \sqrt{ } f^{\prime}{ }_{c}$

$$
\phi \quad=0.75
$$

$$
\beta_{c}=\text { long side of column/ short side of column }
$$

$$
=28 / 28=1
$$

$$
\therefore \quad \phi \mathrm{v}_{\mathrm{c}}=0.75^{*}(2+4 / 1)^{*} \sqrt{ } 4000 / 1000
$$

$$
\begin{equation*}
=0.285 \mathrm{ksi} \tag{1.96MPa}
\end{equation*}
$$

- $\quad \phi v_{c}=\phi^{*}\left(\left(\alpha_{s}{ }^{*} d / b_{0}\right)+2\right)^{*} \sqrt{ } f^{\prime}{ }_{c}$ $\alpha_{s}=30$ for end column
$\mathrm{d}=7.625 \mathrm{in}$
$\mathrm{b}_{0}=$ Perimeter of the critical section
$=2$ * $31.813+35.625$
$=99.251 \mathrm{in}$
$\phi \mathrm{v}_{\mathrm{c}}=0.75^{*}((30 * 7.625 / 99.251)+2)^{*} \sqrt{ } 4000 / 1000$

$$
\begin{equation*}
=0.204 \mathrm{ksi} \tag{1.41MPa}
\end{equation*}
$$

- $\quad \phi v_{c}=\phi^{*} 4^{*} \sqrt{ } f^{\prime}{ }_{c}$
$=0.75 * 4 * \sqrt{ } 4000 / 1000$
$=0.190 \mathrm{ksi} \quad(1.31 \mathrm{MPa})$
------------------ Controls
\therefore Allowable Stress $\mathbf{=} \mathbf{0 . 1 9 0} \mathbf{k s i}$
(ADAPT-BUILDER 0.190 ksi$)$

vi. Stress Ratio

$$
\begin{aligned}
\text { Stress Ratio } & =\text { Actual / Allowable } \\
& =0.143 / 0.190 \\
& =0.75<1
\end{aligned}
$$

(ADAPT-BUILDER 0.76)

The following are excerpt from the report generated by the program Floor-Pro for the punching shear calculations used in this writing.

110.50 COLUMNS

Column Dimensions and Material Property

ID	Label	Centroid $\mathrm{X}, \mathrm{Y}, \mathrm{Alpha}$	A or D	B	Height	Material	Position
		$\mathrm{ft} \mathrm{ff}^{\circ}$	in	in	ft		
1	Column 1	$1.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Lower
2	Column 2	$26.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Lower
3	Column 3	$56.00,14.00,0.00$	28.00	28.00	10.00	Concrete 1	Lower
4	Column 4	$86.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Lower
5	Column 5	$116.00,14.00,0.00$	18.00	18.00	10.00	Concrete 1	Lower
6	Column 6	$146.00,14.00,0.00$	28.00	28.00	10.00	Concrete 1	Lower
7	Column 7	$1.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Upper
8	Column 8	$26.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Upper
9	Column 9	$56.00,14.00,0.00$	28.00	28.00	10.00	Concrete 1	Upper
10	Column 10	$86.00,14.00,0.00$	24.00	24.00	10.00	Concrete 1	Upper
11	Column 11	$116.00,14.00,000$	18.00	18.00	10.00	Concrete 1	Upper
12	Column 12	$146.00,14.00,0.00$	28.00	28.00	10.00	Concrete 1	Upper

180.60 PUNCHING SHEAR STRESS CHECK PARAMETERS

Label	Condition	Axis	Effective depth	Design length rr in	Design length ss	Design area	Section constant	Gamma
			in	in	in2	in4		
Column 1	Corner	rr	7.63	27.81	27.81	$4.24 \mathrm{E}+002$	$3.52 \mathrm{E}+004$	0.40
Column 1	Corner	ss	7.63	27.81	27.81	$4.24 \mathrm{E}+002$	$3.52 \mathrm{E}+004$	0.40
Column 2	End	rr	7.63	27.81	31.63	$6.65 \mathrm{E}+002$	$5.91 \mathrm{E}+004$	0.38
Column 2	Edge	ss	7.63	31.63	27.81	$6.65 \mathrm{E}+002$	$1.27 \mathrm{E}+005$	0.42
Column 3	End	rr	7.63	31.81	35.63	$7.57 \mathrm{E}+002$	$8.73 \mathrm{E}+004$	0.39
Column 3	Edge	ss	7.63	35.63	31.81	$7.57 \mathrm{E}+002$	$1.84 \mathrm{E}+005$	0.41
Column 4	Interior	rr	7.63	31.63	31.63	$9.65 \mathrm{E}+002$	$1.63 \mathrm{E}+005$	0.40
Column 4	Interior	ss	7.63	31.63	31.63	$9.65 \mathrm{E}+002$	$1.63 \mathrm{E}+005$	0.40
Column 5	Interior	rr	7.63	52.63	52.63	$1.61 \mathrm{E}+003$	$7.45 \mathrm{E}+005$	0.40
Column 5	Interior	ss	7.63	52.63	52.63	$1.61 \mathrm{E}+003$	$7.45 \mathrm{E}+005$	0.40
Column 6	Edge	rr	7.63	35.63	31.81	$7.57 \mathrm{E}+002$	$1.84 \mathrm{E}+005$	0.41
Column 6	End	ss	7.63	31.81	35.63	$7.57 \mathrm{E}+002$	$8.73 \mathrm{E}+004$	0.39

180.40 PUNCHING SHEAR STRESS CHECK RESULTS

Load Combination: Strength(Dead and Live)

Label	Condition	Axis	Factored shear	Factored moment	Stress due to shear	Stress due to moment	Total stress	Allowable stress	Stress ratio
Case			k	k ft	ksi	ksi	ksi	ksi	
Column 1	Corner	rr	-41.194	251.965	0.097	0.210	0.307	0.190	1.62
Column 1	Corner	ss	-41.194	12.836	0.097	0.017	0.114	0.190	0.60
Column 2	Edge	rr	-103.761	484.297	0.156	0.300	0.456	0.190	2.40
Column 2	End	ss	-103.761	-0.536	0.156	0.041	0.197	0.190	1.04
Column 3	Edge	rr	-155.519	197.858	0.205	0.095	0.301	0.190	1.58
Column 3	End	ss	-155.519	197.769	0.205	0.161	0.366	0.190	1.93
Column 4	Interior	rr	-203.514	-76.264	0.211	0.035	0.246	0.194	1.27
Column 4	Interior	ss	-203.514	-49.468	0.211	0.023	0.234	0.194	1.21
Column 5	Interior	rr	-232.588	-149.179	0.145	0.025	0.170	0.168	1.01
Column 5	Interior	ss	-232.588	47.776	0.145	0.008	0.153	0.168	0.91
Column 6	End	rr	-94.629	-93.862	0.125	0.018	0.143	0.190	0.76
Column 6	Edge	ss	-94.629	-106.843	0.125	0.051	0.176	0.190	0.93

Legend:

CASE............ 1=Stress within section \#1 governs (column cap or slab) and
CASE............2=Stress within section \#2 governs (drop panel or slab)
CONDITION.....(a)=Program does not check for this column. No result!

[^0]: ${ }^{1}$ Copyright ADAPT Corporation 2005

